exercism-solutions/cpp/space-age/README.md

2.5 KiB

Space Age

Write a program that, given an age in seconds, calculates how old someone is in terms of a given planet's solar years.

Given an age in seconds, calculate how old someone would be on:

  • Earth: orbital period 365.25 Earth days, or 31557600 seconds
  • Mercury: orbital period 0.2408467 Earth years
  • Venus: orbital period 0.61519726 Earth years
  • Mars: orbital period 1.8808158 Earth years
  • Jupiter: orbital period 11.862615 Earth years
  • Saturn: orbital period 29.447498 Earth years
  • Uranus: orbital period 84.016846 Earth years
  • Neptune: orbital period 164.79132 Earth years

So if you were told someone were 1,000,000,000 seconds old, you should be able to say that they're 31 Earth-years old.

If you're wondering why Pluto didn't make the cut, go watch this youtube video.

Getting Started

Make sure you have read the getting started with C++ page on the exercism help site. This covers the basic information on setting up the development environment expected by the exercises.

Passing the Tests

Get the first test compiling, linking and passing by following the three rules of test-driven development. Create just enough structure by declaring namespaces, functions, classes, etc., to satisfy any compiler errors and get the test to fail. Then write just enough code to get the test to pass. Once you've done that, uncomment the next test by moving the following line past the next test.

#if defined(EXERCISM_RUN_ALL_TESTS)

This may result in compile errors as new constructs may be invoked that you haven't yet declared or defined. Again, fix the compile errors minimally to get a failing test, then change the code minimally to pass the test, refactor your implementation for readability and expressiveness and then go on to the next test.

Try to use standard C++11 facilities in preference to writing your own low-level algorithms or facilities by hand. CppReference is a wiki reference to the C++ language and standard library. If you are new to C++, but have programmed in C, beware of C traps and pitfalls.

Source

Partially inspired by Chapter 1 in Chris Pine's online Learn to Program tutorial. view source