Given two integers, L and R, find the maximal value of A xor B, where A and B satisfy the following condition: ``` L <= A <= B <= R ``` #Input Format The input contains two lines; L is present in the first line and R in the second line. #Constraints ``` 1 <= L <= L <= 10^3 ``` #Output Format The maximal value as mentioned in the problem statement. #Sample Input ``` 10 15 ``` #Sample Output ``` 7 ``` #Explanation The input tells us that L = 10 and R = 15. All the pairs which comply to above condition are the following: ``` 10 xor 10 = 0 10 xor 11 = 1 10 xor 12 = 6 10 xor 13 = 7 10 xor 14 = 4 10 xor 15 = 5 11 xor 11 = 0 11 xor 12 = 7 11 xor 13 = 6 11 xor 14 = 5 11 xor 15 = 4 12 xor 12 = 0 12 xor 13 = 1 12 xor 14 = 2 12 xor 15 = 3 13 xor 13 = 0 13 xor 14 = 3 13 xor 15 = 2 14 xor 14 = 0 14 xor 15 = 1 15 xor 15 = 0 ``` Here two pairs (10, 13) and (11, 12) have maximum xor value 7, and this is the answer.