diff --git a/algorithms/bit-manipulation/maximizing-xor/README.md b/algorithms/bit-manipulation/maximizing-xor/README.md new file mode 100644 index 0000000..98c921e --- /dev/null +++ b/algorithms/bit-manipulation/maximizing-xor/README.md @@ -0,0 +1,65 @@ + + +Given two integers, L and R, find the maximal value of A xor B, where A and B satisfy the +following condition: + +``` +L <= A <= B <= R +``` + +#Input Format + +The input contains two lines; L is present in the first line and R in the second +line. + +#Constraints +``` +1 <= L <= L <= 10^3 +``` + +#Output Format + +The maximal value as mentioned in the problem statement. + +#Sample Input +``` +10 +15 +``` + +#Sample Output +``` +7 +``` + +#Explanation + +The input tells us that L = 10 and R = 15. All the pairs which comply to above condition are +the following: + +``` +10 xor 10 = 0 +10 xor 11 = 1 +10 xor 12 = 6 +10 xor 13 = 7 +10 xor 14 = 4 +10 xor 15 = 5 +11 xor 11 = 0 +11 xor 12 = 7 +11 xor 13 = 6 +11 xor 14 = 5 +11 xor 15 = 4 +12 xor 12 = 0 +12 xor 13 = 1 +12 xor 14 = 2 +12 xor 15 = 3 +13 xor 13 = 0 +13 xor 14 = 3 +13 xor 15 = 2 +14 xor 14 = 0 +14 xor 15 = 1 +15 xor 15 = 0 +``` + +Here two pairs (10, 13) and (11, 12) have maximum xor value 7, and this is the +answer.