118 lines
2.4 KiB
C++
118 lines
2.4 KiB
C++
#include "nth_prime.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
|
|
namespace prime {
|
|
|
|
using namespace std;
|
|
|
|
number_t nth(size_t n, size_t sieve_size)
|
|
{
|
|
if (n < 1)
|
|
throw domain_error("invalid prime number index");
|
|
|
|
if (n == 1)
|
|
return 2;
|
|
|
|
vector<number_t> primes = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31};
|
|
|
|
if (n - 2 < primes.size())
|
|
return primes[n - 2];
|
|
|
|
primes.reserve(n - 1);
|
|
|
|
if (auto_sieve_size == sieve_size) {
|
|
|
|
sieve_size = min(size_t(32 * 1024),
|
|
size_t(0.5*(n * (log(n) + log(log(n)))) + 0.5));
|
|
}
|
|
|
|
vector<char> sieve(sieve_size, false);
|
|
vector<number_t> next(n - 1, 0);
|
|
|
|
sieve[0] = true;
|
|
|
|
number_t first_number = 1;
|
|
|
|
auto create_next = [&first_number](number_t p) -> number_t {
|
|
|
|
return (p*p - first_number)/2;
|
|
};
|
|
|
|
transform(primes.cbegin(), primes.cend(), next.begin(), create_next);
|
|
|
|
for (auto p : primes)
|
|
sieve[(p - first_number) / 2] = true;
|
|
|
|
auto process_prime = [sieve_size,&sieve](const number_t &p, number_t &next) {
|
|
|
|
number_t i = next;
|
|
|
|
for (; i < sieve_size; i += p) {
|
|
|
|
sieve[i] = true;
|
|
}
|
|
|
|
next = i - sieve_size;
|
|
};
|
|
|
|
|
|
while (true) {
|
|
|
|
for (size_t pn = 0; pn < primes.size(); ++pn) {
|
|
|
|
const number_t &p = primes[pn];
|
|
|
|
number_t i = next[pn];
|
|
|
|
for (; i < sieve_size; i += p) {
|
|
|
|
sieve[i] = true;
|
|
}
|
|
|
|
next[pn] = i - sieve_size;
|
|
// process_prime(primes[pn], next[pn]);
|
|
}
|
|
|
|
for (size_t i = 0; i < sieve_size; ++i) {
|
|
|
|
if (sieve[i])
|
|
continue;
|
|
|
|
number_t p = first_number + 2*i;
|
|
|
|
primes.push_back(p);
|
|
|
|
if (primes.size() == n - 1)
|
|
return p;
|
|
|
|
next[primes.size() - 1] = create_next(p);//(p*p - first_number)/2;
|
|
|
|
sieve[i] = true;
|
|
|
|
number_t j = next[primes.size() - 1];
|
|
|
|
for (; j < sieve_size; j += p) {
|
|
|
|
sieve[j] = true;
|
|
}
|
|
|
|
next[primes.size() - 1] = j - sieve_size;
|
|
}
|
|
|
|
number_t next_first_number = first_number + 2*sieve_size;
|
|
|
|
if (next_first_number < first_number)
|
|
throw runtime_error("failed to reach prime number");
|
|
|
|
first_number = next_first_number;
|
|
memset(&sieve[0], false, sieve.size()*sizeof(sieve[0]));
|
|
}
|
|
}
|
|
|
|
}
|